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Abstract 
The measurement of steady high pressures in a fluid 

system with the highest aCCUl'acy demands the use of pressure 
balances (free piston gauges) of accurately known effective 
areas. Tlus requires a precise knowledge of the way in which 
the effective areas of the piston-cylinder assemblies concerned 
vary due to the elastic distortion caused by the applied pres­
sure. 

Two methods which have been directed to the solution of 
this problem are described. The first depends on a principle of 
similarity as applied to the neformations of two assemblies of 
the same general dimensions but constructed of materials 
having substantially different elastic moduli. The second 
method makes use of measurement.s of the flow characteristics 
of the pressure transmitting fluid using two pistons having a 
known difference of diameter. 

The distortion factors are shown to be representable as 
linear functions of the pressure, so that the effective area at 
pressme P is connected with that at zero pressure by expres­
sions of the form 

Ap = Ao (1 + AP) 

where'A may be termed the distortion coefficient. 
The final accuracy of the measured distortion coefficients 

is about ± 2%, which corresponds to an uncertainty in effec­
tive area of about ± 1 part in 105 at 1000 bars increasing in 
proportion to the pressure at higher pressures. 

Some aspects of the practical calibration of pressure ba.]an­
ces, carried out by direct balancing against assemblies cali­
brated by the methods described, are considered. 

1. Introduction 
The rapid development of high pressure techniques 

in the last few decades has given rise to considerably 
increased interest in the a.ccurate measurement of 
high pressures, both in fundamental physics and 
chemistry and in the many associated industrial 
applications. In many thermodynamic studies, as for 
example the pressure-volume-temperature relations 
and virial coefficients of gases, the Joule-Thomson 
effect and the measurement of vapour pressures, the 
demands on accuracy are severe. Nevertheless until 
quite recently progress in high pressure measurement 
was much retarded compared with the measurement 
of the other thermodynamic variables, temperature 
and volume, and it is only within the last few years 
that some notable advance has been achieved. The 

object of this paper is to present an up-to-date account 
of some recent developments at the National Physical 
Laboratory which have contributed to these improve­
ments. The discussion is restricted to the case of 
steady pressures. 

There are two 'quite independent basic methods by which 
pressures may, in principle, be measUl'ed or established, with 
precision, or by which other pressure-measuring equipment 
may be calibrated. The first, usually represented in practice by 
the mercury manometer or some extension of it, determines a 
pressure in terms of the height of a column of liquid of known 
density under known conditions of gravity. In the second 
method, pressure is measured directly in terms of the force 
exerted on a surface of known area. In practice this reduces to 
the use of the pressure balance, or free piston gauge, in which 
the force due to the pressure-transmitting fluid acting on the 
base of a cylindrical piston, free to move in an accurately 
matched cylinder, is balanced by a known downard force 
derived from calibrated masses suitably supported on the 
piston. The calibration of the instrument is expressed by 
stating the "effective area" of the piston-cylinder assembly, 
and owing to the distortion caused by the applied forces this 
quantity may be expected to vary with pressure. 

In the lugh pressure region proper, however, the pressure 
balance is virtually the only instrument in the field for prac­
tical pressure measurement of the highest accuracy, as high 
pressure variants of the mercury manometer are very difficult 
to operate even for fundamental calibration purposes. Two 
problems therefore present themselves: 

(i) the establishment of the effective arcas of suitable 
piston-cylinder assemblies in absolute terms at low pressures; 

(ii) the determination of the changes of effective area at 
higher pressures due to the distortion of the assemblies result­
ing from the applied pressure. 

With regard to (i) details are being dealt with in other 
publications and we shall only summarize the present position. 
In the more restricted field of barometric pressme the National 
Physical Laboratory has for many years maintained standards 
based on the mercury manometer and reaching an accuracy 
of a few microbars (SEARS & CLARK 1933; ELLIOTT, WILSON, 
MASON & BWG 1960). Recent work has shown that the effective 
areas of piston-cylinder assemblies based on comparison with 
a mercury manometer of a few atm range, and those calculated 
directly from diametral measurements on the components, 
are in agreement to within about 1 part in 105 (DADSON 1955, 
1958). 

The elastic distortion effect (ii) was for a long time consi­
dered to be a fundamental difficulty in the use of the pressure 
balance as an independent primary standard, but this situa­
tion has now been completely altered with the development 
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of methods by which the dependence of effective area upon 
pressure may be deterrrrined with considerable accuracy. The 
present paper deals in detail with two independent methods, 
termed the " sirrlllarity" and "flow" methods, recently deve­
loped at the National Physical Laboratory for this purpose. 

Several early attempts to measure these distortion effects 
by the use of high pre88ure mercury manometers of various 
forms led to very inconsistent conclusions as to the order of 
magnitude of the effects to be expected (HOLBORN &, SCHULZE 
1915; CROMMELIN & SMID 1915; KEYES & DEWEY 1927; 
MEYERS & JESSUP 1931; BEATTIE & EDEL 1931). MICHELS 
(1923,1924,1932) has discussed applications to the differential 
type of piston· cylinder assembly . The most recent, and by far 
the most comprehensive, investigation of this kind is that of 
NEWITT and his colleagues, using a 9·m pressurised differential 
mercury manometer installed at the Imperial College of Science 
and Technology (BETT, HAYES & NEWITT 1954; BETT & 
NEWITT 1963). The measurements, covering a range up to 
700 bars*, were difficult, and the resulting distortion factors 
for six pressure balance assemblies of similar design varied 
among themselves by much more than would be expected 
from their construction. It seems that more extensive data 
will be necessary before a final asse88ment of the high pressure 
mercury column can be made. ROEBUCK & CRAM (1937) and 
ROEBUCK & IBSER (1954) have dealt with a recent develop. 
ment of the multiple· column type of mercury manometer 
covering the range up to about 200 bars. 

The distortion errors of the " controlled· clearance" type 
of pressure balance used at the National Bureau of Standards, 
Washington, have been considered by JOHNSON & NEWHALL 
(1953) and by JOHNSON, CROSS, HILL & BOWMAN (1957); (see 
also BENNETT & VODAR 1963). It is hoped that t he results of 
direct comparisons between the methods of calibration deve­
loped at the NBS and thfl NPL may be available in the near 
future. Accounts of the distortion errors of various designs of 
piston. cylinder assemblies from the point of view of elastic 
theory have also been published by ZHOKOVSKII (1960) , 
SAMOILOV (1960), EBERT (1935, 1949, 1951) and TOYOSAWA 
(1963, 1964). These authors, however, give primary attention 
to the establishment of the distortion factors by calculation 
rather than by experiment. The present paper, on the other 
hand, describes direct experimental methods which are inde­
pendent of other pre88ure standards, and practically indepen­
dent of detailed elastic theory, to which appeal is made only 
in the calculation of small correction terms. 

2. Formal Theoretical Basis 

a) General 

As a basis for discussion of the methods described 
in this paper it is useful to develop a number of formal 
expressions for the changes of effective area of a 
piston-cylinder assembly consequent on the distortion 
due to the applied pressure. Initially, these formulae 
will not involve any assumption as to the form of 
distortion; later, however, the results of introducing 
certain simplifying assumptions will be examined. 
Unless otherwise stated, it is assumed only that the 
piston and cylinder are initially straight and coaxial, 
that there is circ~ar symmetry in all planes perpen­
dicular to the axis, and that the pressure transmitting 
fluid in the interspace flows in accordance with the 
normal laws of viscosity. 

The essential features of the system are shown 
diagrammatically in Fig. 1. The upward force due to 
the fluid pressure P applied to the base of the piston, 
corrected for the forces due to the pressure and 
movement of the fluid in the gap between the piston 
and cylinder, is balanced by the total downward force 
due to the load, W. We denote by rand R the radii 
of the undistorted piston and cylinder respectively, 
u(x) and U(x) the increases in these radii for a total 
applied pressure P, p(x) the pressure in the interspace, 
and 2 h(x) the radial separation, at the axial distance 

* 1 bar = 106 dyn/cm2 = 1OSN/m2• 

x measured from the lower end of the piston, l the 
total length of engagement, Ap the effective area of 
the system at the applied pressure P, and write 
R - r = 2 H , where all of H , h, u and U are very 
small compared with I'. P and p are always to be inter­
preted as the amount by which the actual pressure in 
the system exceeds the ambient pressure - normally 
atmospheric - to which the balance is exposed, and 
the effective area as a factor of dimensions L2 which, 
when multiplied into the total applied pressure, gives 
the total downward force provided by the load which 
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Fig. 1. Diagrammatic sketch of piston-cylinder assembly (clearance shown 
greatly exaggerated). -- Undistortecl boundaries of piston and cyllnder, 

- .. Distor ted boundaries of pis ton and cylinder 

is required to maintain the piston in equilibrium, For 
small applied pressures when distortion is negligible, 
we have from elementary considerations, 

Ao = m·2 (1 + 2 Hlr) (2.1) 

neglecting second and higher-order tenns in 2 Hlr, 
where Ao is the effective area at zero pressure, 

To obtain the more general formulae when dis­
tortion is present we note that the fluid forces acting 
on the piston have the following components : 

a) upward force due to applied pressure on base of 
piston 

Pnr2 [1 + 2 u(O)lr] ; 

b) upward force due to fluid friction on flanks of 

piston I ( d) 
2nr S -h d~ dx , 

o 
I 

= 2 nr S [- d(ph) + .E. (dU _ dU)] dx 
dx 2 dx dx ' 

o 
c) upward force due to vertical component of ap­

plied pressure on flanks of piston 
I 

2nrS p du . dx 
dx 

o 
Thus the total upward force acting on the piston is 

I 

Pnr2 [1 + 2 u(O)jr] + 2 nr S [_ d(;:) + 
o 

+ ~(~~ + ::)]dx, 

\~ ...... ~ ............................ ' .................... ~--
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or 

Pnr2 [(1 + 2 H/r) + U(O) : u(O) 

(dU + d7t) dX] . 
dx dx 

I 

+_1- Sp 
rP 

o 

The formula for the effective area is now 

Ap = nr2 [(1 + 2 Hf1') + U(O); u(O) + 
I 

+ _1 S (dU dU) dX] 
TP P d.~ + d.?; 

o 

(2.2) 

of which expression (2.1) is a special case with U and 
u zero. We may evidently obtain (2.2) more directly 
by visualising the neutral surface as the effective 
boundary of the piston in which case the frictional 
force corresponding to b) above vanishes and we are 
left simply with the pressure forces acting on the 
effective boundaries of the piston. We also have the 
equivalent form 

Ap = nr2 [1 + 2 u(O)/r + 
I I 

+ r~ (S - h :; . dx + S p :~ . dX)] (2.3) 
o 0 

I 

which is convenient for use when the integral S - h 
o 

p 

:; dx (01' S h dp) is of interest, as is the case, for 
o 

example, when the flow method (section 5) is conside­
red. 

b) The effects of special assumptions 

The problem of calculating the actual chanO'es of 
effective area of practical designs of piston-cylinder 
assembly, on the basis of the above general formulae, 
is complicated. It would be necessary to know the 
interrelated quantities u, U and p as functions of x , 
and since the pressure gradient dp/dx is governed by 
the normal equation of viscous flow (see equation 5.1), 
the pressure dependence of the coefficient of viscosity 
would also need to be taken into account. It is not, 
however, the aim of the present paper to attempt such 
calculations, but rather to describe direct experimen­
tal methods for the accurate determination of the 
distortion factors with the minimum of assumptions 
regarding the detailed behaviour of the system. vVe 
therefore consider only certain special cases which are 
useful in the applications which follow. 

A useful approximation may be derived from the 
foregoing equations by assuming that the component 
of u(x) or U(x) due to the fluid pressure in the inter­
space between piston and cylinder may be taken to 
be proportional to the pressure p(x) at the same posi­
tion. The relevant terms in the integrals on the right 
hand side then become integrable without the neces­
sity for any further lmowledge of the actual functional 
forms of ~t(x), U(x) or p(x). There is fair support from 
elastic theory for this assumption, more especially in 
the case of the solid cylinder in which the length is 
large compared with its radius, a condition which 
applies to the pistons of most pressure balance assem-

blies other than those catering for only a low range of 
pressure. CHREE (1889, 1901) has given polynomial 
solutions for the equilibrium of a finite solid cylinder 
for cases in which the lateral pressure is either a 
linear or quadratic function of the axial co· ordinate. 
The conditions are satisfied by functions u(x) and 
p(x) which are accurately proportional, provided the 
normal tractions over the flat ends, instead of beinO' 
identically zero, are assumed only to average to zero~ 
By Saillt-Venant's principle, however, the effect of 
this disturbance will be appreciable for only a short 
distance from each end, and may be neglected if the 
ratio of length to radius is considerable. The constant 
of proportionality is the same as in the case of uniform 
pressure on a solid cylinder of infinite length. FILON 
(1902) has obtained solutions for pressure distribu­
tions expressed in series of trigonometric functions of 
x which lead to a similar result provided the wave­
lengths involved are fairly large compared with the 
radius. The effects of discontinuous pressure distribu­
tions, or narrow bands of applied pressure, have also 
been discussed (BARTON 1941; RANKIN 1944; TRANTER 
& CRAGGS 1947), with the general result that even the 
effects of discontinuities are largely lost at an axial 
distance of only about half the radius. If, therefore, 
the pressure changes along the length of the assembly 
are reasonably smooth, no great error is likely to be 
incurred by applying this assumption to the piston of 
the assembly. Taking into account the additional 
change of radius due to the end thrust on the piston, 
it is easily shown that the relevant terms involving u 
on the right hand side of equation (2.2) reduce to 
P (3 a - 1)/2 E where E and a are respectively Young's 
modulus and Poisson's ratio, so that we now have, 
using also (2.1), 

I 

A = A [1 + P(3a-1) + U(O) + _1-S dU . dX] 
p 0 2 E r 'rP p dx 

o 
(2.4) 

Another useful form, obtained directly from (2 .3), is 
p 

Ap = nr2 [1 + P(3; -1) + r~ S h dP]' (2.5) 

o 

The application of a similar assumption to deal 
with the effects of internal pressure in a hollow cylin­
der with thick walls is less secure. CHREE (1901) has 
given a corresponding solution with U(x) and p(x) 
proportional for the case where p(x) is a linear func­
tion of x, but its validity would depend on the condi­
tions assumed at the ends. The case of a discontinuous 
distribution of pressnre has been considered briefly by 
TRANTER (1946). In the ideal case of a cylinder whose 
length is large compared with its radius and wall 
thickness, where the working section is removed some 
distance from the points of attachment of the ends, 
and the pressure distribution is reasonably smooth, 
a useful approximation may result. Proceeding from 
equation (2.4), and taking for defilliteness the case 
where the cylinder walls are not subjected to longitu­
dinal stress, we then obtain (LOVE 1952), denoting by 
R' the outer radius of the cylinder, 

Ap = A {1 + ~ (3a-l) + ~[(1+a)R'2+(1-a)R2]} 
o 2E 2E R'2- R2 

(piston) (cylinder) 
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or, combining the distortion terms, 

Ap = Ao [1 + ~ (2 (j + R12~2 R2 )] (2.6) 

In the limiting case with R'I R effectively infinite 
this reduces to the simple expression 

Ap=Ao(1+
2
;.P). (2 .7) 

Equations (2.4) to (2.7) are a useful basis for the 
development of certain small correction terms which 
arise in the theory of the similarity and flow methods. 

3. The Similarity Method 

a) Principle of the method 
In normal practice the assemblies for which cali­

brations are principally reqrured are constructed of 
steel. The principle adopted in the similarity method 
is first to determine the ratio ofthe effective area of the 
steel piston-cylinder assembly of given type, at a 
series of pressures, to that of a precisely similar 
assembly constructed of a material having a substan­
tially different elastic modulus. This procedure deter­
mines the difference between the distortion factors of 
the two assemblies as a function of pressure. A second 
relation - the quotient of the two distortion factors -
is obtained from measurements of the elastic moduli 
of the two materials. The combination of these results 
then allows the distortion factor of each assembly to 
be derived, as a function of pressure, in absolute terms. 

b) Ideal theory of the similarity method 
In its ideal form the similarity method is extremely 

simple, and involves no assumption regarding the 
form of distortion of the assembly when under pressure. 
In the ideal situation the two materials are regarded 
as elastically isotropic, with linear stress-strain rela­
tionships and identical Poisson's ratios over the 
range of stress involved. The two assemblies are assu­
med to be constructed to the same principal dimen­
sions and to have accurately straight and circular 
pistons and cylinder bores. Ideally, the initial radial 
separations between the components of the two 
assemblies should be in inverse ratio to their 'elastic 
moduli, although it is found in practice that this 
condition is not critical. These conditions ensure that, 
as the distortion changes with increasing pressure, the 
annular channels between piston and cylinder will 
remain similar in form and that consequently the 
pressure distributions along the lengths of the channels 
will always remain the same for the same total applied 
pressure. 

If these assumptions are realised the distortion 
terms in the expressions for the effective areas will 
remain in a fixed numerical ratio as the pressure is 
varied. In other words the effective areas Ap and Bp 
of the two assemblies at the applied pressure P may 
be written in the form, 

Ap = Ao[l + AAf(P)]; Bp = Bo[l + ABf(P)] (3.1) 

where AA, AB are constants in inverse ratio to the 
elastic moduli, and f (P) is a function of the applied 
pressure of which the form is unknown but is the same 
in both cases. Bearing in mind that the distortion 
terms are normally very small compared with unity, 
the ratio of the areas may be expressed in the form 

~; = ~: [1 + (AA -AB)f(P)] (3.2) 

and writing AB =. kAA, where k is a constant, we 
obtain 

~; = ~: [1 + (1- k)AAt(P)] . (3.3) 

The ratio Api Bp, and consequently the function 
(1 - k) AA t (P) , may be determined easily and with 
high precision by simply measuring the loads on the 
two pistons when the assemblies are balanced against 
one another and in eqcilibrium at the same pressure, 
and carrying out this procedure at a series of pressures 
over the appropriate range. The quotient, k, of the 
elastic moduli may be determined by the standard 
methods for the measurement of elastic constants. It 
is clear that in the ideal conditions postulated these 
two procedures suffice to establish the values of the 
distortion terms AA f(P) and AB f(P) to an accuracy 
limited only by the sen~itivity of the balancing process 
and the precision to which the elastic constants are 
known. In general it is found to be the second factor 
which eventually limits the accuracy attainable, and 
to obtain the best precision k should evidently differ 
substantially from unity. 

It is of particular interest that the rheological 
properties of the pressure transmitting fluid - e. g. 
dependence of coefficient of viscosity upon pressure -
are entirely eliminated in the similarity procedure. 

In order to simplify further discussion it is useful 
at this point to anticipate one practical result of the 
investigation, viz. that in most cases the distortion is 
vm:y closely represented by a linear function of the 
applied pressure so that we may normally replace 
f(P) by P, when the quantities AA and . .AB may be 
regarded simply as pressure coefficients having the 
dimensions (pressure)- l. Thus we may write instead 
of (3 .1), Ap = Ao (1 + AAP) etc. , in all but excep­
tional cases. 

c) Effect of departures from the ideal conditions 
It would be a somewhat fortunate coincidence if 

the ideal assumptions were completely realised in a 
pair of actual metals having a sufficiently large ratio 
of elastic moduli, and also adequate tensile strengths, 
to justify their use in practice, and it is necessary to 
consider to what extent minor departures may be 
tolerated or whether reliable correction terms can be 
developed. Materials showing appreciable elastic 
anisotropy are hardly worth consideration owing to the 
greatly increased complexity of the distortion of the 
system, and the labour of determining the complete 
set of elastic constants over a wide range of stress. 
Again, a pronounced departure from a linear str~ss­
strain relation would introduce awkward complica­
tions; small departures may be tolerable, subject to .a 
corresponding uncertainty in the value of the elastIC 
modulus. In the case of a moderate difference in the 
values of the Poisson's ratios, however, it is not 
difficult to formulate a correction term. This is small 
and need only be evaluated approximately. :For- thls 
purpose we make use of the formula (2.4), and express 
the distortion coefficients in the form AA = e.A + (jJ A . .• 

where 
eA = (3 (j(A) - 1)/2 E(A) •. • (3.4) 

and (jJA is that part of AA which is explicitly dependent 
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on the deformation of the cylinder. As the ratio R'/R 
is fairly large in the actual cases considered, the main 
term expressing the cylinder distortion is proportional 
to (1 + a)/E , i . e. to 1/G where G is the modulus of 
rigidity. 

Interpreting k as the quotient of t.he two moduli of 
rigidity, we now have 

AA - AB = qJA - qJB + OA - OB 
= (1 - k) qJA + OA - OB 
= (1 - k) AA + (kOA - OB) (3.5) 

determining AA in terms of the difference coefficient 
AA - AB established by the balancing procedure, the 
value of k, and the correction term (kOA - OB). 

d) E xtension to the use of three materials 

the distortion coefficient of the assembly chosen, i. e. 
S, without any appeal to the elastic constants of the 
material of S. These three derivations are not entirely 
independent but, since the six independent .elastic 
moduli involve five independent ratios, no one result 
is in general deducible from the other two. Proceeding 
on the lines of equation (3.5) and denoting by As . . . 
the true values of the distortion coefficients, Gs .. . 
the moduli of rigidity, Os.. . the corresponding 
correction terms given by equation (3.4), ASB ( = 

As - AB) . .. the difference coefficients determined by 
the balancing experiments, and kSB = GBIGs . . . , we 
have for the three possible experimental values, A~, 
}'s and X8" of As, the equations 

A~ (kBS - 1) = ABs - OB + kBS Os (3 .6) 

In the first series of experiments the material }'s (kTS - 1) = ATS - OT + kTS Os (3.7) 
adopted for the comparison assemblies was a form of 
aluminium bronze, known commercially as "hydurax", for the direct comparisons, and for the indirect 
the modulus of rigidity of 
which was lower than that Table 1. Summary of elastic constants 

of steel in the ratio 1 : 1.44. 
The Poisson 's ratio was 
rather higher than that of 
steel (see Tab . 1 for further 
details). It was apparent 
that a check involving a 
third material, differing 
substantially in elastic prop­
erties from those used hith­
erto, would provide a valu­
able test of the accuracy of 
the similarity method. An 
even better check would 
naturally be provided by a 
completely independent 
pair of materials. This latter 
extension has not so far been 
found practicable as the 

Modulus of rigidity (G) Young's modulus (E) 
(dynjcm2)* (dynjcm2)* Poisson's 

Extensometer ratio (a) 
Material Torsion Ultrasonic method Ultrasonic (Ultrasonic 

extenso meter pulse (mean of results pulse pulse 
method) method method for tension and method 

compression) 

Steel (K 9) 
x 10" x 10" x 1011 x 1011 (hardened 7.86 7.92 20.6 20.5 0.295 

and tempered) 

Aluminium 
bronze 5.45 x 10" 5.38 x 10" 14.45 x 10" 14.33 X 10" 0.333 
(Hhydurax") 

Tungsten alloy 
("GECheavy 

13.55 x 10" 14.25 x 10" x 10" x 1011 metal" - 36.1 36.7 0.2865 
specific gravity 
18) 

choice of materials possess- * 1 dynjcm2 = 0.1 Njm2• 

ing all the qualities requi­
red is limited. It has been found possible, however, to 
extend the procedure to include three materials, the 
third being an alloy of tungsten known commercially 
as "GEe Heavy Metal". This material proved to have 
a high degree of isotropy and a Poisson's ratio very 
close to that of the material used for the steel assem­
blies. The elastic moduli exceed those of steel in about 
the ratio 1.75: 1 and it was of advantage that in this 
case the comparison should involve a material having 
a modulus higher than that of steel in contrast to the 
former comparisons in which the reverse beld. 

In discussing this extension of the method it will 
be convenient to refer to the steel, bronze and tungsten 
assemblies by the initial letters 8 , Band T respectively. 
With a group of three materials, the distortion coeffi­
cient of anyone assembly, say S, may be reached by 
three different routes, two of them direct - i . c. 
involving direct comparisons with the other two 
assemblies Band T - and the other indirect. In the 
latter procedure the distortion coefficient of one of 
the other two assemblies, say T, is first determined 
by applying the similarity principle to Band T , and 
the coefficient for S is then obtained by simple addi­
tion of the difference coefficient for Sand T. It is of 
interest to note that the indirect procedure leads to 

As' (kBT - 1) = ABT - OB + kBT 01.' + },ST (kBT - 1). 
(3.8) 

Transposing these equations and malting 
the subsidiary relations 

kBS kSB = 1 . . . kBS kST kTB = 1 ; 

ABs = - ASB . . . ABs + AS1.' + ATB = 0 ; 

we eventually obtain 

(A~ - As') (1 - kSB) = (J,s' - As) (kST - 1). 

use of 

(3 .9) 

(3.10) 

Since (1 - kSB) and (kST - 1) are both positive it 
easily follows from this equation that the three values 
},~ , As and As' must either be all equal or all unequal, 
and that the indirect value As' must be intermediate 
between the two direct values, whatever the nature of 
the experimental errors*. The practical significance of 
various possible errors is examined in more detail in . 
section 4 b). 

e) Determination of elastic constants 
The elastic constants utilised in the investigation were 

measured in the Strength of Materials Section of the Basic 

* We ignore cases where either kSB or kST is so close to 
unity that experimental errors might cause a change of sign 
of (1-ksB) or (kST-'l) since such conditions would not be accep­
table as a basis for the similarity method. 
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Physics Division of the National Physical Laboratory, and 
included results obtained by the ultrasonic pulse method 
(MARKHAM 1957) as well as by the standard static methods 
giving the stress· strain relations over a wide range of stress. 
Young's modulus was measured both in tension and compres­
sion using a Martens type rhomb and mirror extensometer. 
The modulus of rigidity was determined by means of an NPL 
design of torsion extensometer in which readings were taken 
either with an autocollimator or with the normal arrangement 
of scale and telescopes. 

Precautions were taken to ensure that the samples used 
for the preparation of test pieces were sufficiently represen­
tative of the material used in the piston-cylinder assemblies. 
Wherever possible they were selected from the same piece or 
batch of material. In cases where this was impracticable, 
material of similar composition was used, care being taken 
that any heat treatments involved were adequately repro­
duced. A study by BROWN, COLE & MARKHAM (1957) on the 
effects of heat treatment and tempering on the elastic moduli 
of the steels concerned illustrates the significance of these 
effects. 

The results of the elastic modulus measurements are 
summarised in Tab. 1. On the whole the agreement between 
the ultrasonic and static methods is good, the discrepancies 
rarely exceeding 1 or 2%. It seemed desirable, however, to 
decide on a consistent basis for the choice of the actual values 
to be adopted in practice, especially as regards the values of 
G and a which are particularly important in the applications 
to the similarity method. It was decided, after consultation 
with experts in the field of elastic properties, to proceed as 
follows: 

i) For the modulus of rigidity, to adopt the static values 
taken over a ... vide range of stress, as being those most likely 
to be representative of the conditions obtaining in practice 
when the system is subjected to sustained forces. It is pertinent 
to note that as we are interested only in the ratio of the values 
of G for a pair of materials, certain types of systematic error in 
the elastic measurements will be eliminated. 

ii) For Poisson's ratio, to adopt the values obtained by the 
ultrasonic m~th~g in which this quantity is given directly in 
terms of the observed wave velocities. This value is likely to 
be considerably more accurate than one derived indirectly 
from static measurements of E and G since, as these are deter­
mined by different experimental procedures, their ratio may 
be subject to a systematic error. Since E/G = 2 (1 + a) and a 
is normally intermediate between 1/3 and 1/4, any error in 
E/G would entail an error proportionately 4 or 5 times larger 
in a. It may be noted, however, that even if the actual value 
of E/G were somewhat in error the relation between the loads 
and displacements would still help to show up any important 
variation in a over the range of stress, so that the static results 
provide useful evidence on this point. 

The ultrasonic measurements provide direct information 
on the elatic isotropy of the material. This was found to be 
satisfactory in the case of all three materials considered in 
this investigation. 

The relations between displacement and applied force 
given by the extensometer measurements showed a satis­
factory degree of linearity, and freedom from important 
hysteresis effects, with the exception of the tungsten alloy at 
high stresses. When tested under the condition of a rising 

. series of values of stress, this material exhibited departures 
from linearity, principally for stresses above about 1600 bars 
(1.6 x 1()8 N/m2), which seemed consistent with some degree 
of plastic deformation. Series taken in descending order of 
stress, however, showed a much closer approximation to linear 
behaviour, indicating a modulus reasonably consistent with 
that obtaining over the lower range of stress, i. e. before the 
appearance of the anomalous permanent set. This point is 
further discussed in the next section, where a variation of the 
balancing procedure used in the similarity method, to take 
account of this anomaly, is described. 

f) E xperimental method 
As previously remarked, the effective areas of the piston­

cylinder assemblies of the two different materials have been 
compared by direct balancing on a common pressure system 
as this is the most convenient method assuming that two 
complete pressure balances are available*. 

* It should be noted that the balancing process is not in 
itself fundamental to the similarity procedure. The essential 
condition is that the equilibrating loads on the two assemblies 

For the purposes of the present work the equilibrium state 
of a piston-cylinder assembly is defined to be that in which the 
piston is falling at such a rate as exactly to compensate for the 
volume of fluid lost by the natural leakage through the inter­
space between the piston and cylinder. In the case of two 
assemblies balanced against one another, these conditions 
imply that there is no movement of fluid through the connec­
ting line. Leaks in other parts of the system must of course be 
carefully controlled if these equilibrium conditions are to be 
reproduced unambiguously. The accuracy of the balancing 
process is normally of the order of a few parts in 106 • 

The dependence of the effective area on temperature has 
been found to be adequately represented by the area coefficient 
of thermal dilatation which, in the case of steel assemblies, 
amounts to a change of about 2.3 parts in 1OS/ °C. The 
temperatures of the piston-cylinder assemblies were ·measured 
to within about 0.05 °C. 

To load 

I­
I 
I 
I 
I 
I 

seal 
o 

Type (a) 

-l 
I 
I 
I 
I 
I 

J Pressure seal 
Type (b) 

Fig. 2. Diagrams of piston-cylinder assemblies (Scale of em) 

Some obvious small corrections to the loads on . the two 
assemblies may be necessary to account for: 

i) any difference of level of the two pistons; 
ii) buoyancy effects due to any submerged portions of the 

piston of other than the working diameter; 
iii) surface tension at the meniscus at the upper end of the 

piston. 
Since the comparison is between assemblies of the same 

nominal dimensions, the corrections involved in ii) and iii) will 
normally cancel out, or nearly so. 

Two rather different types of piston-cylinder assembly 
have been used in the present work, and these are shown 
diagrammatically in Fig. 2, a) and b). Units of type a) have 
been used over the range of pressure up to about 3000 bars, 
the assemblies having nominal effective areas of 0.05, 0.02 
and 0.01 in2* and differing only in the diameter of the piston 
and cylinder bore. The units of type b), which have been used 
mainly for the higher part of the pressure range - i. e. from 
about 1500 to 6000 bars - were of nominal area 0.005 in2* . 

The piston-cylinder units of type a) are attached to the 
support column by screwing into a collar shown in outline in 
Fig. 2, the pressure seal being effected between an annular 
projection at the base of the assembly and a flat shelf at the 
upper end of the column. In order to avoid any possibility of 
anomalous effects due to a discontinuity in the elastic modulus 
at the junction, the support column used in association with 
any particular assembly was constructed of the same material 
as the assembly itself. In the units of type b) the housing, also 
shown in Fig. 2, was rather different. The main cylinder block 

should be determined for exactly the same pressure. It would 
be possible, though more difficult, to do tills by determining 
the load on each assembly separately when exposed to an 
accurately reproducible pressure identified, for example, by a 
phase transition of a pure substance. If two complete balances 
were not available it might well be necessary to resort to some 
such method. 

* The approximate metric equivalents are: 
0.05 in2 = 0.322 cmz; 0.02 inz = 0.129 cm2; 
0.01 in2 = 0.0645 cm2 ; 0,005 in2 = 0.0322 cm2• 
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was held with a tight press fit in an outer jacket and, to 
investigate the effect of the latter, tests were made both with 
the outer jacket of the comparison assembly of t he same 
material (tungsten) as the inner block, and also with a jacket 
of high tensile steel. These two arrangements showed no 
appreciable difference as regards the distortion factor. 

AU diametra l meaSUl"ements required on the pistons and 
cylinders were carried out in the Engineering Metrology Sec­
tion of the Standards Division of the National Physical Labo­
ratory by direct comparison with high quality slip gauges, 
the sizes of which a re known to a bout ±10- 6 in ( ±0.025 ,um) 
(NPL Ann. ]'{,ep. '1919; TAYLERSON '1955). 

The main part of the load on t he piston was applied in the 
familiar manner by annular masses stacked on a cylindrical 
carrier of the overhang type supported on the upper end of the 
piston by a steel baU. In order to minimise friction the assem­
blies were a lways operated with the piston and load system in 
free rotation . The speed of rotation is not in general crit ical 
for assemblies of the types used in t he present measurements 
but for definiteness a speed in the range 30 - 40 rev/min was 
normally adopted. Piston-cylinder assemblies occasionally 
exhibit. anomalous effects due to smaU helical errors on thc 
piston surface - ofteu referred to as "corkscrewing" - which 
have the effect of adding a spurious component - positive or 
negative according to the direction of rotation - to the load. 
The e effects are easily identified and in order to eliminate 
t hem measurerllellts were always made using both directions 
of rotation, and the mean value adopted. Any assembly 
showing a considerable degree of asymmetry of t his kind 
would have been rejected as unsuitable for measurements of 
t he a,ccuraey a,nd reproducibility necessary for t he present 
work . 

In carrying out the balancing experiments the faU of the 
pistons was observed either by the use of optica,l magnification, 
or electronically using a, ca,pacita,nce methorl. 

The normal practice in ta.king observations ovcr a,ny given 
range of pressure was first to take a, series in rising order of 
pressure and to follow t his as soon a,s possible by a, repeat ill 
descending order. In geneml these series showed no systematic 
divergence and hysteresis effects were negligible. There was. 
however, one exception to this rule, applying to comparisons 
involving the tungsten ba,se material at pressures above about 
3000 ba,rs. In t his rase t he rising series of points over t he upper 
part of the pressure mnge showed a t endency to curve away 
from the initial stmight line in the sensc of an abnormally 
large increa,se in a,rea on the part of t he tungsten assembly. 
This abnormal component of the deformation recovered only 
very slowly on remova,l of the pressure, and it wa,s found that 
if_ after exposlU"e to t he maximum presslU"e. a relatively rapid 
series of readings was ta,ken in descending order, these a,pproxi ­
mated well to a straight line which, moreover, was sensibly 
pa,rallel to t he initial portion where hysteresis was not appre­
ciable. As already pointed out, the elastic constant measure­
ments on the t Wlgsten base alloy showed very similar chamc­
teristics, with a,nelastic effects over the higher ranges of stress 
but providing reasolla,bly consistent values of the elastic 
modulus from the series of rea,clings taken with diminishing 
stress. It was considered justifiable_ therefore_ to rega,rd the 
descending series as being fairly representa,tive of t he ela,stic 
behaviour of thesc assemblies, in so far as t llis enters into the 
similarity procedtu·e. On tillS basis measurements with the 
steel and tungsten assemblies were extended 11p tQ the region 
of 6000 bars. The practicability of using some more recently 
developed a,lloys of high modulus is being considered for 
possible further extensions of the method. 

4. Results of the Similarity ll'Iethod 
a) Meas~l1-ements involving two materials t01" the mnge 

~lP to 3000 ba1·s 
Some account of the earlier measurements in this 

series has been given in two former papers (DADSON 

1955, 1958) but for completeness the main features 
are summarised below. 

Fig. 3 illustrates the results obtained with a series 
of piston-cylinder assemblies of type a) - Fig. 2 -
covering three different ranges of pressure. The chan­
ges in effective area are shown as parts in 105 of the 
area at zero pressure, and in two cases results are 
given for different transmitting fluids. 

As was mentioned earlier the distortion factors for 
assemblies of this type may be very closely represen­
ted as linear functions of the applied pressure, the 
dispersion of the experimental points rarely amount­
ing to more than ± 1 part in 105 . 

It will also be apparent that for a given fluid the 
distortion coefficients for assemblies having different 
cylinder bores are very similar, the coefficient As 
being normally in the region 4 X 1O- 7/ bar. The normal 
manufacturing tolerances on this type of assembly 
seem to involve little variation in the distortion 
coeffici ent, the values for a substantial group for the 
same transmitting fluid having been found to vary by 
only a few percent. 

A point of interest arises in connection with the 
use of different fluids , when, as illustrated in Fig. 3, 
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Fig. 3. 
Distortion factors of a group of steel piston-cylinder assemblies of type" 

some variation of the clistortion coefficient may occur. 
It would seem that these effects must be connected 
with differences in the functional form of the depen­
dence of the coefficient of viscosity upon pressLu'e 
and its resulting influence on the pressure distribution 
in the interspace between piston and cylinder. In the 
d.iscus~ion of the formal theory of the pressure balance 
earlier in this paper the effect was examined of assum­
ing that the components of the radial displacements of 
the surfaces of the piston and cyliuder at a given 
position due to the fluid pressure in the interspace 
could be taken as proportional to the pressure at the 
same position. Reasons were adduced that this assump­
t.ion was unlikely to be much in error in the case of the 
piston, but was less secure in the case of the cylinder. , 
It is an immediate consequence of this assumption -
see equation (2.6) - that the distortion factor is 
independent of the actual pressure distribution in the 
interspace, and should therefore be independent of the 
transmitting fluid. The experimental results thus 
provide evidence that the assumption in question is 
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not entirely correct, at least for the assemblies of type 
a) , and it will be the cylinder, the lateral dimensions 
of which are not small compared with the length of the 
working section of the bore, where the principallimita­
tion will arise. If the cylinders were appreciably longer 
compared with their wall thickness, and the region of 
attachment were located further away from the work­
ing portion, the dependence on the nature of the fluid 
might well be reduced. Although the changes so far 
observed are not very large, they are sufficient to 
require that any standard calibration of a piston­
cylinder assembly intended for work of high accuracy 
must be associated with the particular fluid used. This 
is an aspect of the pressure balance on which more data 
would be useful . 

b) Results of meaSUTements involving three matel'ials 
with discu..~sion of errors 

The three-material procedure has been carried out 
for two presoure ranges - 500 and 1200 bars -

although the correction factor already discussed 
should take account of this. Making use of equations 
(3.6) to (3.8) and introducing the actual numerical 
values of k B S ... , it is easily shown that an error of 
x% in the relevant ratio of elastic moduli (k) leads to 
percentage errors in the three values, A~, A~ and A~' of 
the distortion factor, of about 3.3x, 1.4x and 0.9x 
respectively. In this respect therefore, the direct 
comparison using Sand T and the indirect compari­
son, would be expected to show an appreciable advan­
tage over the direct comparison using Sand B . Con­
sidering now the errors associated with the correction 
terms es .. . of equations (3.6) to (3.8), introduced to 
allow for differences of Poisson's ratio, some advantage 
may lie with the direct comparison using Sand T in 
which the two Poisson's ratios are nearly equal, the 
correction term in this case amounting to only about 
2% of the total distortion factor. 

The data of Tab. 2 are therefore seen to be con­
sistent with the assumptions that the main errors 

involved are associated with 
Table 2. R esults of three-material e.rperimenl .. o the values adopted for the 

elastic moduli, and that the 
ratios of these are known 
to the order of ± 1 or 2%, 
the corresponding distor­
tion coefficients being con­
tained within a dispersion 
of about ± 4%. If, however, 
the two most favourable 
comparisons (A~ and ),~') 
are selected, and the mean 
taken, the final result is 
unlikely to be in error by 
more than about 2% . In 
the practical application of 
the results this procedure 

Distortion coefficient 

Nominal Pressure 
of steel assembly for castor oil 

(bacI ) 

effect ive range Direct Direct Indirect 
area comparison 

with bronze 
comparison 

with tungsten 
comparison 

(bars) (;.~) (;.~') 

0.05 in2 500 4.00 X 10-7 

(0.322 cm2 approx.) 

0.02 in2 1200 4.1 0 X 107 4.0, X 10-7 

(0.129 cm2 approx.) 

Mean results 
for above 4.08 X 10- 7 4.05 X 10- 7 4.07 X 10-7 

cases 

employing assemblies of type a) - Fig., 2 - of nominal 
areas 0.05 and 0.02 in2 respectively, using castor oil 
as the pressure transmitting fluid. The results of these 
measurements are summarised in Tab. 2 in which are 
shown the values of the distortion coefficients for the 
steel assemblies determined both by the direct and 
indirect methods. Over the pressure range in question 
the dependence of disrortion on pressure was closely 
linear, with no appreriable hysteresis effects. The 
actual coefficients given are best fits by least squares 
to some four to six sets of data . It is worthy of note 
that it has been verified by direct balancing that the 
distortion coefficients of the two steel assemblies 
concerned are actually equal to within 1 % . The total 
ruspersion of the results is in the region ± 4% , but it 
will be seen that there is evidence that the direct 
comparisons involving bronze (A~) are subject to more 
scatter than the remainder. This result is not sur­
prising since, from the point of view of the influence 
of possible uncertainties in the elastic constants, this 
comparison is in every way at a disadvantage relative 
to the other two. Since the factor k has here its smal­
lest value ( = 1.44), and the comparison is with an 
assembly having a larger distortion, the operative 
factor in equation (3.6), viz (k - 1), is particularly 
sensitive to an error in k. The fact that the Poisson's 
ratios are somewhat different is also not an advantage, 

has been adopted . 

c) Extension to pressures of 6000 bal's 
The extension of the similarity method from 3000 

to the region of 6000 bars has been carried out entirely 
with assemblies of type b), of nominal area 0.005 in2, 
those of type a) being normally restricted to use below 
3000 bars. The experimental value of the distortion 
coefficient is 3.02 X 10-7jbar, and is thus appreciably 
smaller than the figure for assemblies of type a) 
averaging at about 4.06 X 10- 7jbar. 

The form of the type b) assemblies approximates 
more closely to the "ideal" piston-cylinder combina­
tion. In considering the formal theory in Section 2 it 
was noted that a very simple approximation to the 
distortion factor could be derived on the assumption 
that the radial displacements of the piston and cylin­
der surfaces at any position due to the fluid pressure 
in the interspace are proportional to the pressure at 
that position, and. the limitations of this assumption 
were discussed. Inserting the appropriate numerical 
values in equation (2.6) the distortion coefficient so 
deduced, assuming a ratio of external to internal 
cylinder diameter of 10:1, is about 2.9 X 10- 7jbar. 
The close approach of this figure to the experimental 
value for the type b) assemblies certainly suggests 
that the assumptions involved in the "naive" theory 
are not greatly in error in this case. There are, how­
ever, some features of the actual cylinder, notably the 
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stresses on the end surfaces, which are not taken into 
account in the calculation so that the rather close 
agreement observerl in this particular instance may be 
partly fortuitous. 

The application of the similarity method deter­
mines the distortion coefficients of the type a) and 
type b) assemblies quite independently of one another. 
Since the two types are found to have appreciably 
different coefficients, a direct comparison, e. g. by 
balancing a steel assembly of type a) against one of 
type b) , is now able to provide an additional check of 
the overall accuracy of the procedure. The results of 
experiments on these lines are shown in Fig. 4, which 
compares the values of the distortion factors of a 
type b) assembly derived in two independent ways: 

i) by direct application of the similarity method to 
the type b) assembly, and 

ii) by comparison of the same type b) assembly 
with assemblies of type a) , the distortion factors of 
which had previously been determined by direct 
application of the similarity method. 

It will be seen that the results obtained by the two 
methods are practically indistinguishable ; the actual 
mea n values of several determinations of the distor-

,- I 1 I 
• SifTI/lari/y me/had-dtred n Comparisan with ca/ibraled 

assemblies af Iype (a) 

5000 6000 

.Fig. 4. Distortion factor of assembly of type b determined by two methods 

tion factor for the type b) assembly are 3.02 X 10- 7 

and 2.95 X 10- 7/bar for procedures i) and ii) respec­
tively. This independent check thus supports the 
estimates of accuracy put forward in the foregoing 
section. 

d) Practical applications 
Once the effective area of a pressure balance 

assembly has been measured in absolute t erms as a 
function of pressure over a given range, it is possible 
to calibrate almost any other assembly covering the 
same range, and using the same pressure transmitting 
fluid, by the process of direct balancing. In the course 
of the present investigation a large number of indivi­
dual balances of different patterns have been cali­
brated , including many for other users . Balances 
involving piston-cylinder assemblies of types a) and 
b) - Fig. 2 - have already been discussed. These 
show, for a given fluid, fairly consistent distortion 
coefficients, typified by the values given above in 
sections 4 b) and 4 c). In such cases, it may be suffi­
cient for many purposes to take an average figure as 
typical of assemblies of a given pattern. 

Another type of balance in common use, of which 
a considerable number have been calibrated, is that 
employing a simple piston-cylinder assembly consist­
ing of a bronze cylinder combined with a steel piston_ 
This type also exhibits fair consistency as regards 
dependence of effective area upon pressure, the distor­
tion coefficient being about 8 X 1O-7/bar. 

Calibrations have also been made of a number of 
differential piston-cylinder assemblies of the well 
known form shown diagrammatically in Fig. 5. In 
this type of assembly the actual effective area is the 
difference between the effective areas of the two 
constituent piston-cylinder combinations, the upper 
combination being varied in diameter to suit the 
desired pressure range. The considerations leading to 
the approximate equation (2.6) may easily be extended 
to include this differential type of assembly (e. g. 
ZHOKOVSKll 1960) and lead to the expectation of a 
distortion coefficient in the region 3 to 4 X 10- 7/bar, 
with a gradual decrease as the diameter of the upper 
unit is reduced. Experience at the National Physical 
La horatory so far has indicated , however. that this 

o I 2 3 'I Scm 

.Fig. 5. Diagram of differential piston-cylincier assembly 

type of assembly does not exhibit the kind of consist­
ency found in the case of the simple piston-cylinder 
assemblies. In a group of ten such differential assem­
blies coefficients ranging from about zero to 11 X 10- 7/ 

bar were found , with no indication of any regular 
dependence on the constituent piston diameters . This 
may be due to the fact that in many cases the effective 
area is the difference between two much larger areas 
so that the effect of any abnormality on the part of 
either of the constituent piston-cylinder combinations 
may be considerably magnified. It could also be 
associated in part with the difficulty of constructing 
such assemblies with the two cylinders exactly coaxial. 
' V"hatever the explanation, however, it seems that 
each assembly of this type requires individual cali­
bration and that the assignment of typical values of 
the distortion coefficient , or reliance on calculated 
values, would not be satisfactory in this case. 

5. The Flow Method 
a) Principle of the method 

The flow method was developed in order to pro­
vide an independent check of the changes of effective 
area of a pressure balance assembly determined by 
the similarity method, by means which would be 
independent of the considerations on which the 
similarity method is based, but which would still 
depend entirely on the properties of the assembly 
itself without reference to other standards of pressure. 
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The principle used is to introduce a deliberate and 
accurately measurable initial change of effective area 
- by varying the diameter of one of the components 
of the assembly - which is made to serve as a refe­
rence quantity in terms of which the additional 
changes of effective area due to pressure may be 
calculated from measurements of other quantities 
which vary with the applied pressure. 

The procedure used is actually only one of a class 
of possible methods, of which others will be mentioned 
below. In the form adopted the rates of flow of the 
pressure-transmitting fluid through the interspace 
between the piston and cylinder are measured, at a 
series of applied pressures, using two alternative pistons 
having an accurately known difference of daimeter. A 
simple relation may then be developed connecting 
the changes of effective area due to distortion with the 
initial change due to the different piston diameter, and 
the rates of flow corresponding to the two pistons. 

Two other methods of the same general nature, 
but not depending on flow measurement, were consi­
dered and some preliminary experiments carried out. 
In the first case the quantity measured was the rate 
of retardation of the rotation speed of the piston and 
loading weights due to fluid friction in the clearance 
between piston and cylinder, corresponding to the 
two piston diameters. It was found , however, that the 
contribution due to air friction on the rotating load 
system was an important factor, and rather elaborate 
measures would have been necessary to eliminate 
this effect. In the second case the intention was to 
compare the electrical capacitances of the piston­
cylinder assembly corresponding to the two piston 
diameters. This method, on which so far only very 
preliminary trials have been made, would very likely 
repay further exploration, but a knowledge of the 
pressure dependence of the dielectric constant of the 
transmitting fluid would be required to complete the 
reduction of the experimental data. 

b) Theory of the flow method 

The main problem in the theory of the method is 
to establish a reasonably simple connection between 
the measured rates of flow of the pressure transmitting 
fluid and the corresponding changes of effective area 
at the same applied pressures. 

To introduce the variation of effective area with 
pressure we adopt the formal expression (2 .5) of section 
2 b, in which the only term dependent upon h is the 

P 

integral r~ S hdp. The remaining variable term, 
o 

P (3 a - l)fE, is a small part of the total, and it has 
already been seen that the assumption on which the 
derivation of this term is based is unlikely to lead to 
appreciable error. 

Denoting by Q the volume velocity of the fluid 
through any section of the annular gap, and'YJ (x) the 
coefficient of viscosity of the fluid at the axial dis­
tance x , it is easily shown that, under conditions of 
viscous flow, 

(5.1) 

* To avoid unnecessarily complicating the notation we 
ignore variations of the density of the fluid with pressure, as 
these are very unimportant compared with the variations in 
the coefficient of viscosity. 

and by direct integration, we have 
P 

3Q S h3 
4 :nr = -:rj dp . 

o 
(5.2) 

In order to exhibit the direct relation between Q and 
P 

S hdp in a suitable form we may integrate equation 
o 
(5.1) by a different route, whence we obtain 

(5 .3) 

1 
This equation shows that the factor relating Q'3 to 
P 

S hdp is a function only of the pressure distribution 
o 
in the interspace between piston and cylinder, and is 
not explicitly dependent on h. This suggests the 

P 1 

possibility that S ( 'YJ ~~ ) '3 dp may not vary very much 
o 

for a moderate change in the initial diameter of the 
piston. 

Re-arranging equations (5.2) and (5.3) , and writing 
for brevity 

(
3 Q)t 

X= 4 :nr and 
P 1 

J = - S ('YJ :;) -3- dp , 
o 

we have 
PIP P 1 

S hdp = X J; J = l'3 S hdp / (S ~ dp) '3. (5.4) 
000 

The second of these equations provides the basis for 
the calculation of the integral factor J , connecting 
the required changes of effective area with the experi­
mentally determined rates of flow. 

Before considering further the evaluation of the 
integral J, it is convenient to convert the formal 
equations connecting the changes of effective area 
with the quantities X and J to a form suitable for 
application to the experimental data. Proceeding 
from equation (2.5) and using suffixes 1, 2 where 
necessary to distinguish the two piston diameters, 
and denoting by (jr the value of h - r 2 ) we have 

p 

Ap,I = :n;r~[ 1 + ~ (3 a-·l) + r: P S hI dPIJ ' 
o 
P 

Ap'2 = ~r~[1 + ~ (3a - l)+r~pSh2dp2J 
o 

whence, ignoring terms of the second order of small 
quantities, 

Ap'l+Ap' 2 = 2:n;r~[1 +; (3a-l)-0; + 

P P 

+ r1p(S hI dpI + S h2 dP2)] ' 
o 0 

and 
P P 

Ap,l - Ap,2 = 2 :n;r~ [0; + r~ (S ~ dpl - S h2 dP2)] 
o 0 
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p 

Transposing, and substituting Xl 11 for J hI d1Jl etc. 

we obtain 

~ (A p ,) + A p ,2) - nri [1 + f (3a - 'I) - ~J 
1 ~r 
2 (A p ,) - A",2) - nl'! r 

1.2...1. _ '\ 
(

, I ) . 
Xl I) 

(5.5) 

The right hand side of this equation is completely 
determined by x2/x1 ' the ratio of the cube roots of the 
measured rates of flow, and the ratio 121/1' The quan­
tity (Ap,l - Ap, 2) occurring in the denominator of 
the left hand side may be determined by direct balanc­
ing of the two forms of the assembly against any third 
reference assembly, and the quantity /51'/r is established 
by diametral measurements on the two pistons. The 
small quantity P (3 a - 1)/E is known with sufficient 
accuracy from the elastic constants of the material. 
Subject, therefore, to further examination of the 
factor 12/11 equation (5.5) enables the quantity 
(Ap ,l + A p ,2)/2, i. e. the mean of the effective areas 
of the two forms of the assembly, to be determined, 
as a function of the applied pressure, from the experi­
mental observations. 

It is evident that the term :n;1'i . /51'/1' occurring in the 
denominator of the left hand side should be identical 
with (Ao,l - A o,2) and this may be checked directly 
from the experimental data. If, as may be the case, 
the difference (Ap , 1 - Ap , 2) is independent of pressure, 
the denominator of the left hand side may be written 
more simply as - (Ao, 1- Ao, 2)/2, but it cannot of 
course be assumed a priori that tIllS condition will 
hold. 

c) Treatment of the integral'!, 
In order to estimate the value of I some simpli­

fying assumptions must be introduced if the theory 
is not to become unjustifiably complicated. From the 
second of equations (5.4) it is clear that we can calcu­
late I if we can express h and 'I] as functions only of p. 
As regards h, the justification for assuming that the 
part of h(x) arising from distortion due to the pressure 
in the interspace between the piston and cylinder may 
be taken as proportional to the pressure pix) at the 
same position has already been discussed. Bearing in 
mind that we are not really interested in the absolute 
values of II and 12, but only in their ratio, this assump­
tion is not likely to lead us far astray. As before, there 
is an additional component of h arising from the 
longitudinal thrust on the piston, which will be pro­
portional to the total applied pressure, P. vVe therefore 
write 

h = H + vP + flP (5.6) 

where fl and 1) are constants. 
The coefficient of viscosity at constant temperature 

is certainly determined uniquely by the pressure and 
there is considerable evidence available from published 
measurements that the dependence may be represent­
ed reasonably closely by an exponential function, in 
other words that we may write 

'I] = '1]0 e"'j} (5.7) 

where IX is a constant and '1]0 is the value at zero (or 
atmospheric) pressure. This relation has been found to 
hold with fair accuracy for most oils of types likely to 
be used in conjunction with pressure balances, although 
it appears that there may be more pronolllced depar­
tures in the case of some silicone fluids (BRIDGMAN 
1952; Amer. Soc. Mech. Engrs. 1953 ; ZOLOTYKH 1960). 

The evaluation of I in terms of the constants in 
equations (5.6) and (5.7) is now straightforward and, 
writing for brevity 

c = (H + vP) IX/fl ' 
we obtain 

1 3 

1 = (l'l]of'a p'i: l' , 
where 

l' = (IXP),%- (c + at) 
1 

{
C

3 + 3 c2 + 6 c + 6 } - '3 
- e- IX P [(C +IX P)3 + 3(C +CX P)2 + 6(c + cxP) + 6] 

(5.S) 

This quantity may conveniently be represented as a 
family of graphs showing its dependence on (H + vP)/ 
flP for a suitable range of values of IXP. 

In order to apply equation (5.S) the values of 
(H + vP) /flP and IXP corresponding to the experi­
mental points are required. Denoting by (lp the ratio 
X2 I21x1 11 at a given applied pressure P, and by (lo 
the extrapolated value of (lp corresponding to zero 
applied pressure, and using equation (5.6), we find 
that 

_ H2 + vP + I1-P{2 
(lp - H) + 1)P + I1-P{2 ' 

whence, after some reduction, we obtain the equations 

H) + vP = eo - 1(~+ 1 )_~ (5.9) 
I1-P eo - el' 11- 2 2 

and 

H2 + vP = p eo - 1 (~ +~)-~. (5.10) 
11- P (l eo - e" It 2 2 

We do not need to know the values of fl and v, but an 
approximate figure for v/ fl is required. From the elemen­
tary theory leading to equation (2.6) we easily find 

v/fl = - a/2 (approx.) 

whence we obtain, with sufficient accuracy, vlfl = 

-0.15. Initially, of course, we cannot actually use the 
ratio X2 I2/xl II since 12111 has not yet been deter­
mined. In practice, therefore, we commence by using 
simply the experimental ratio X2/X1 to obtain a first 
approximation to the correction factor, and then if 
necessary proceed to a second approximation. 

To derive the appropriate value of IXP we again 
ignore initially the distinction between 11 (P) and 

1 

12 (P) , and denoting the quantity (X2 - Xl) p - '3 at 
the applied pressure P by LlX (P) , we obtain from 
equations (5.4) and (5.6) 

2 

Llx(P) = p'3 (H2 - H 1)/I (P) 
1 

= (H2 - HI) (l'l]o)--f /1' (P) 

whence, dividing the experimental value of LlX (P) 
into the extrapolated value corresponding to zero 
applied pressure, we have 

Llx (O)/LIX (P) = 1'(P)/I' (O) . 
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Making use of the values of (H + v P)/fl P derived 
above we are now able to determine the value of a P 
which best fits the experimental data by simple in­
spection of graphs or tables of the function 1' . In this 
case, again, a second approximation may be derived 
if necessary. 

Having carried out the above procedures we are 
now in a position to determine the values of 11 and 
12, and consequently the ratio 12/11 , corresponding to 
the actual experimental points, and then to calculate, 
using equation (5.5) of the previous section, the 
changes in the effective areas of the assemblies as a 
function of the applied pressure. 

d) Experimental method 
The experimental procedures used in that part of 

the flow method involving the direct comparison of 
effective areas by balancing need no further considera­
tion as they are exactly the same as those previously 
described in section 3 f. In the measurement of the 
rate of flow of the pressure balance fluid use is made 
of a very simple device. With the balance operating 
on an otherwise leak-proof system the change in 
volume of the contained fluid due to flow through the 
interspace between the piston and cylinder is exactly 
compensated by the gradual descent of the piston, 
and the rate of fall of the latter is thus directly propor-

series of measurements. As a fully temperature­
controlled room was not available it was necessary to 
determine a temperature coefficient in order that each 
series of readings could be converted to a common 
temperature, which was taken to be 20 °0. In general 
the apparatus and air temperatures were held to 
within a few tenths of a degree during anyone series. 
In order to avoid extraneous friction , all the measure­
ments were made with the piston and associated load 
in free rotation, the speed chosen being in the range 
30 to 40 rev/min. In any group of measurements at a 
given pressure readings were taken alternately for the 
two directions of rotation, and the mean taken, to 
ensure that any possible effects due to small helical 
errors on the piston surface were eliminated. 

The changes of effective areas with pressure were 
also measured, using the same pressure transmitting 
fluid in each case, by the similarity method. The results 
of the measurements, and the comparison of the two 
methods, are discussed in the next section. 

6. Results of the Flow Method 
a) Experimental pammeters and corTection terms 
The various parameters and correction terms 

required in the derivation of the changes of effective 
area as a function of pressure are given in Tab. 3 for 
the two assemblies concerned, together with the dis-

Table 3. Parameters and correction terms 

I Ao (1) - Ao (2) <5r A p (1) - A p (2) I Typical values of Distortion 
Mean r correction term coefficient ominal Ao Ao Estimated difference . II" 12//1 (bar-I) 

area of calculated from el>.'}lerlmenta (ex- value of ex 
assembly of piston difference of value trap) (bac1) diameters piston diameters (parts in 106) Pressure I 12//1 Flow \ Sinillal'ity 

(parts in 106) (bar) method method 

0.05 in2 5.45 x 10-5 in 21.6 21.4 1.48 0 1.000 3.2 X 10- 3 4.25 x 10- 1 4.38 x 10- 1 

I (0.322 cm2 (13.81 x 10-5 cm) (independent I 140 1.002 

I approx.) of pressUl'e) 

I 
280 1.0055 
560 1.004 

0.02 in2 2.75 x 10-5 in I 17.5 17.5 (P ":" 0) 1 1.32 I 0 1.000 2.3 X 10- 314.01 x10-1 3.96 X10-1 
(0.129 cm2 (6.98 x 10- 6 cm) decreasmg 250 1.0015 
approx.) smoothly to 500 1.003 

IS·O(P-ISO~ 

tional to the rate of flow. All that is necessary therefore 
is to time the descent of the piston over a constant 
short distance, the measured time being inversely pro­
portional to the rate of flow. In practice this was car­
ried out by using an optical magnification system and 
measuring the time of descent over a distance of the 
order 1 mm by stopwatch, but if the method were to be 
used at all extensively a more sophisticated procedure 
could obviously be substituted, using, for example, a 
photoelectric recording arrangement. 

The work has been carried out using two piston­
cylinder assemblies, of nominal effective areas 0.05 
and 0.02 in2, covering respectively pressure ranges up 
to about 600 bars and 1500 bars. The transmitting 
fluid used was in each case a mixture of two mineral 
oils, known commercially as Diala and Talpa respec­
tively. 

Since the coefficient of viscosity is markedly depen­
dent on temperature precautions had to be taken to 
ensure that the temperature of the piston-cylinder 
assembly remained as constant as possible during a 

1000 1.002 
I 1500 0.999 

tortion coefficients determined by the flow and simi­
larity methods. 

A good check of the internal consistency of the 
different measurements is provided by a comparison 
of the figures in the third and fourth columns of the 
Table from which it will be seen that the changes of 
effective area at zero pressure, calculated from the 
measured piston diameters, are in very close agreement 
with the changes determined experimentally by direct 
balancing. The correction terms 12/11> of which typical 
values are given, nowhere differ from unity by as 
much as 1 % in the present range of experiments, but 
owing to the form of the right hand side of equation 
(5.5) they are just sufficiently significant to warrant 
taking them into account. If the flow method were to 
be extended to higher pressure ranges it is likely that 
larger corrections would be involved, and these might 
eventually limit the pressure range attainable with 
reliability. 

It will be seen that somewhat different values of 
the coefficient a were found in the two cases. This 
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probably arose from the fact that thc transmitting 
fluids, although nominally similar mixtures , were not 
actually identical , as was apparent from differences 
of viscosity. 

b) Comparison with the similarity method 
The most important aspect of the flow method as 

so far applied is its value as confirmation of the results 
obtained by the similarity method. This comparison 
is shown, for the two cases considered, in Tab. 3 and 
in Figs. 6 and 7. In each case the same piston-cylinder 
assembly, and the same transmitting fluid, were used 
in the determinations by the two methods. Although 

30 liT T l 

tl Nominal area a05in
2 (O.32:~2/cm2) 

~ 0 Flow method 
:::-., , SifTIIYarity method • 

~ 'S:,201- • -

!t~ / -
~~/- ' 
(j • 

..s; • I I I I I 

a lao 200 300 I(.()O 500 600 
Applied pressure (bars) 

F ig. 6. Comparison of distortion factors determined by the similarity and 
flow methods. Assembly of type a with mineral oil mixture A 

the agreement is very close in both cases, the confir­
mation is especially important in the case illustrated 
in Fig. 7 where the pressure, and the corresponding 
distortion factors , cover the widest range. The flow 
method confirms not only the value of the distortion 
coefficient, with agreement to the order 2 or 3 % in 

tl 75 

~ 
1 _I I 

Nominal area a02 in2 (aI29cm"2) /' 
o Flow method /' 
' Simdari/y method --r' . ./" -

/ ' 
.s; ~ /: 
<ll ~25I-/'V"'O "5 '-' 
~ . 
E 
~ I I I 

-

a 250 500 750 /000 /250 /500 1750 
Applied pressure (bars) 

Fig. 7. Comparison of distortion factors determined by the similarity and 
ftow methods . Assembly of type a with mineral oil mb:ture B 

both cases, but also the fact that the distortion term 
is accurately representable as a linear function of the 
applied pressure. The flow method shows a slightly 
increased dispersion of the experimental points, which 
is believed to be due to residual uncertainties in the 
temperature of the assembly. It has been noted that 
the correction terms 12/11 do not. differ greatly from 
unity, but it is found that the inclusion of this correc­
tion factor gives a small but definite improvement in 
the agreement with the similarity method. 

The results of these comparisons therefore support 
the estimate of accuracy of the measured distortion 
coefficients already arrived at as a result of the discus­
sion in Section 4 b, viz. that these coefficients are de­
termined to about 2%. An error of this magnitude in 
the distortion coefficient would imply an error of about 
1 part in 105 in the effective area of the assembly at 
1000 bars compared with its value at zero pressure, the 

crror increasing in proportion to the applied pressure. 
The very close agreement between the flow 

method and the similarity method up to the region 
of 1500 bars suggests that the flow method, or one of 
the other methods based on the same general prin­
ciple, may have useful applications in the further 
extension of this work to higher pressures . 
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